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‘NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1170

ON SUBSONIC COMPRESSIBLE FLOWS BY A METHOD OF CORRESPONDENCE
I — METHODS FOR OBTAINING SUBSONIC CIRCULATORY COMPRESSIBLE FLOWS
ABOUT TWO-DIMENSIONAL BODIES

By Abe Gelbarid
SUMMARX

By meang of the general solutions of the hodograph equations for
compressible fluilds, certain solutions corresponding to solutions of the
hodograph equations of an incompressible fluld are used to find flow
patterns of compressible flulds. When the adlebatic equation of state
1s used, only a general method is outlined.

The method appears to lead to the solution of the problem of sub—
sonic flows with circulation around arbitrary bodies, as the method of
Theodorsen does for incompressible fluids. A second paper, part II,
1llustrates the method for some given bodies. For the linearized equa—
tion of state, the results obtained include some of the results of Von
Karmin and Tslen, as well as some of the recent results of Bers. The
method can be used for flows with circulation as well as without clrcu~—
lation

INTRODUCTION

It 1s well known that the nonlinear compressible—flow equations in
the physical plane can be reduced to linear equations which have the
form of generalized Cauchy—Riemann equetions by the change of the ihde—
pendent variables in the physical plane to the independent variables of
the hodograph plane. The successful technique applied to the solution
cf the incompressible—flow problems around glven bodles was achileved
only because the theory of analytic functlons had been developed pre—
viocusly. It would, therefore, be suspected that similar results for the
theory of compressible fluids could be obtsined if there were develcped
a theory corresponding to the theory of analytic functions for the gen—
eralized Cauchy-Riemann equetions representing the flow of a compressible
fluid in the hodograph planse.
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Development of such a theory has been partly achieved by the theory
of Z-monogenic functions (references 1 and 2). This theory has not
yot attained the perfection that the theory of analytic functloms has.
However, ‘the I~monogenic Taylor series and the r-monogenic Leplace
transforms may be partly able to overcome the weasknesses ol this method.
Some efforte in this direction are being made in this paper.

Even with the complete theory of gZ-monogenic functions one of the
chief drawbecks of the approach lies in the difficulty of transforming
the solutions from the hodograph plane to the physical plane.

The method of the theory of correspondence has been very briefly
outlined in reference 3. The procedure is to obtain the flow of an in—
compressible fluid around some given closed body, to transform the com—
plex potential of the flow to the hodograph, and then to obtain the
particular I-monogenic fFfunction of the infinite set of solutions which
poesesses the deslred properties.

It may seem, at first, that this technigue is too general to be of
practical use, but there slready exlst some interesting reeults of the
application of this method. Furthermore, this technique is certain%y
not new. It has been used with much success by Chaplygin, Von Karman,
Teien, Bergmen, Bers, and others. (See references 4 to 12.) However,
much is believed to be new in the specific use of this method when
employing I-monogenic functions. When the method is applied directly
to that of & source and a sink of an incompressible fluid, the method
Fields a source and a sink of a compressible fluid. o

It is the aiin of this paper to elaboraete on the correspondence
method in a general way and to apply it in particular {to the flow of a
compressible fluld under the linearized equation of state. It should
be mentlioned that thls method has already been epplled, under the as—
sumption of the linearlzed equation of state, by others, notably by
Cheplygin, von Kérmap, Telen, and Bers.

By dealing with the method in all its generality, a formmla is ob—
tained involving an arbitrary analytic function. 3By choosing particular
values of this arbitrary function, of which the derivetive is regular in
the exterior of a reglon including the origin, the particular formmlas
of Teien (reference 6) and Bers (reference 8) are obtained. Once the
arbitrary analytic function is determined for a given flow, velocities,
-gtagnation pointe, and so forth, can be readily computed. In a pecond
paper by Bartnoff and Gelbart (reference 13), some flOWB around given
“bodies are calculated.

This investigation wag carried out at Syracuse Unlversity under
the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics. This report was submitted in July
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1945, The author wishes to express his thenks to Mr. Bartnoff for the
valuable assistance rendered in the preparation of this report and to
Syracuse University for technical assistance and cooperation.

SYMBOLS

k,a,8 conastants

P pressure
o] density
q veloclity

P1,81 perticular values of the guantitiles

o subscript referring to the state of the fluid at rest
u horizontal velocity

v vertical veloclty

e angle that velocity vector makes with horizontal

U, - veloclity of undisturbed stream

q distorted velocity

a velocity of sound i
W complex variable in distorted hodograph plane

c complex varleble in hodograph plane

4 complex variable in physical plene

M Mach number (q/a)}

P, P potential functions

U, ¥ stream functions

Q complex potential (@ + 1Y)

¢ complex variable in auxillary plane

7 ratio of specific heats



G(¢)
r
T

W(n)
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constant depending on velocity of undisturted stream
% =<1 b/ 1 4 o_am>
%

complex potential of an incompressible fiuild in suxiliary plane

cilrculation of an incompressible fluid
an anelytic function of the velocity q

generalized complex powers

Q(n),Q*(n) generalized real powers

generalized differentiation
generalized multiplication

binomigl coefficients

generalized complex exponential function
generalized real cosine function
generalized real sine function
generalized Laplace transform

complex conjugate of ( )

absolute value symbol

COMPRESSIBLE FLOWS UNDER THE ASSUMPTION OF

THE ADIABATIC EQUATION OF STATE

The four basic relations for the potential flow of a steady two—

dimensional fluld that willl be assumed are:

Equation of atate, p = kp? (1)

where
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P pressure
o] density

retlo of the specific heats .
k constant

Bernoullit's equation,

2 &
g ., 2 - constent (2)
2 p

The continuity equation,

v (£7) = 0 - O 3)

and the circulation eguation (for irrotetional fluids),
curl GD =0, (&)

The veloclty of sound 1s given by : ' - -

2 _ dp o .y
a 3o (5)

From equation (5) the Bermoulli eguation can be written in the form
2 4
%? +L/[‘a2 ?? = constant (6)

which often is more convenient. From these assumptions on the fluid,

the first two equations give rise to the relations for density, pressure,
the velocity of sound, and so forth, in terms of the velocity only. The
third and fourth equations give rise to the egquations of motion of the
flow,

The subscript zero on the variasbles p, P, and a will indicate
the particular velue of the veriasble at a stagnation point. It will be
agsumed throughout that
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Po = 8g =1 (1)

This is equivalent to introducing the dimensionless varilables p/po
and q/aq.

From eguations (1) and (2), with the aid of equation (5), the fol-
lowing well-lmown relations are established:

a2 = a2 ~ [ (v - 1)/2]02 - (8)

X
— 2\ Fu

2 &02
7
- 1¢3\ " 73
=3, 1+ 5) T (9)
I
- 71
p=po<l~7 l-—-‘?-‘-é-)
2 a
1 q2 -t
Y —49- 71
= p (1+ , (10)
° 2 a2
M2=..g.§£
p dg
-1
= g2/ (aoa - Z—-é-—“ q2-> (11)

These quantities are all given in terms of the single variable g,

From the basic relations (3) and (4),and the fact that the flow is
potential, there exist two functions ¢, +the potential function, and ¥V,
the streem function, that satisfy the equations

1 B
q’x = ;‘Vy

=l
q)y p\|!x y
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where the subscripts indicate partial differentiation with respect to the
variables indicated. The independent variables x and Yy are the coor-
dinates in the physical plane of the position of the particle of the
fluid. System (12) represents the flow of a compressible fluid.

Let u and v be the horizontal and the vertical velocitles, re—
spectively, of a particle of the fluid at & point (x,y). Then

q cos 6

u

(13)

v q sin 6

Wwhere q 1s the magnitude of the velocity —5_, and € the angle that q
makes with the x—axis.

From the physical definitions of the potential function ¢ and the
stream :E‘u.nction Y, 1t follows that

dp = u dx + v dy (1)
dy = — pv dx + pu dy (15)

Since 49 = @, dx + @y dy and dy =Yy &x +Yyy 4y, systenm (12) can be

czbtained directly by comparing these equations wi'bh equations (14) and
15)

From equations (14%) and (15) it follows that

dp + 1 = d\lf udx+vd;y'+i(—vdx+ud,v)

(uw —iv)(dx + 1 dy)

LI}

qe"j'e dz - . . ; e

where 2z = X + 1y. Thus it follows that
ie -
iz = QE_ (dcp + % axp) _ (16)

In the hodograph, the coordinates are the polar. coordinates (g,0).
Equafion (16) is in the nature of a transformation from the hodograph
coordinates of the flow to the physical coordinates (x,y). It is this
fact that mekes equation (16) of fundamental importance for the approach
used in this paper.



8 NACA TN No. 1170

Upon eliminating first one snd then the other of the two unknown
functions, @ and Y, from equations (12), the second—order partial

differential equations
(eog), + (poy) , = © (a1)

(Bo)e- (30), -0 )
are obtained

From equation (1l4) it i1s deduced that
2= /o + 9pf (19)

850 that p 1is a function of the unknown ¢. XEgquations (17) and (18)

are therefore nonlinear. It is precisely this condition that has led
previous investigators to trensform the flow equations from the independ—
ent variables (x,y) in the physical plane to the independent variables
(q,8) in the more geometrically complicated hodograph plane., As will be
shown, these geometric complications can be circumvented after the lin—
earized equations in the hodograph variables are used to advantage.

The flow equations in the hodogreph variables have been derived
from equations (12) by many previous writers. For the gake of complete~
ness, however, an outline of a derivation will be presented here. - (See
reference 10.)

Equation (16) is first differentiated with respect to 8:

9z _ 1 16 /39 1 dy
=L = = 20
38 g ° (ae MY (20)

and then with respect to q: )
-a-i=-3-'ej‘6<gﬁ+i-:'-:a-.-'-'}i (21}
9 gq q, p dq

Equation (20) ie differentiated with respect to gq:

2 2 2
9q08 g2 3¢ dg \pg Q8. q dq 08 p g 6
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and equation (21) is differentisted with respect to 6:

3z 1 16 13y . 1 16, 3% 1 2y
= =9 +1E2¥y .2, + 1= — (23)
6 dq gq ( p 8q,> q 98 og p 08 dq

Since the left—hand sides of equations (22) end (23) are equal, it fol—
lows that

§19<£+ii5§ [ 359 <oq> ] (24

The flow equations in the hodograph variebles are obtained by equating
the real and the imeginary parts of equation (24):

W
39 _ g oV
08 p oq
' (25)
244 (L
oq da\ pq
From equation (11)
-d—p- = e .e M2
dq a
It follows that
E..(..J_-_) =% 8o 1 . .
dq \pq p2q dg pg® | _
= __l_é M2 _ 12 =" 12 (M2 _ l)
Pq 3]0} al¢)
Equations (25) can now be written in & more suitable Fform:
d Y A
o0 _ g oY _
0 p g
) | (26)

3 _ _ 1=M2 3V

oq pg 36

J
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The fact that M and p  are functions of q only makes equations
(26} linear. These equations can be handled mathematically with much
greater ease. than can the nonlinear equations (12) in the physical planse.
The theory of Ef-monogenlc functions has been set up for Jjust this pur—
pose. Though'the solutions of equations (26) that are obtained give the
complex potential of the flow in texms of the veloclty of a particle of
the fluid rather than in terms of the position of the partilcle, the fun—
damental transformation, equation (16), enables these golutions to be
trensformed beck to the physical plane. The fact that the right—hand
side of eguation (16) is an exact differential facilitates greatly the
procesg of carrying out this transformation.

SOLUTIONS OF THE COMPRESSIBLE FLOW EQUATIONS AS FUNCTIONS
OF THE HODOGRAPH VARIABLES

Equations (26) can be written in a more genoral form for the purpose
of mathematical treatment:

2
- ov
% = 71(9.) 3
> (27)
3 _ Q¥
g Tg(Q) 3 )

where T, and T, are positive analytic functions of gq. The condition
that T4, be positive is equivalent to assuming that the flow romains sub~—
gonic. Many of the mathematical results that will be precented here hold
also when Tp becomes negative, so thet flows involving supersonic ve—
locities can be treated. This has been carried out elsewhere for very
special flows. (See reference 3.)

Consider the function represented by the line integral

F(o) = ¢(6,a) + 1J (6,q)
9;‘1 . 8,q
= - _ 1
_.1/ (cpd.e T, (@ d.g_’,) + 1 (wde Pl dq) (28)
0s%0 0:%0 3

where 68g, o are fixed values of 6 and g end o =86 + 1g. By

virtue of equations {27) a simple computation verifies that each of the
two integrands in the right—hand side of equation (28) is an exact differ—
entlial.
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This establishes that F is a function of the point (0,q) and
has the same value when the integration is taken along any path, provided
proper regard is given to slingulerities.

The second important fact about F(B,Q) is that its real part @
and its imaginary pert ¥ again satisfy the system of equations (z1).
This affords a method of genera@ing particuler solutions of system (7).

It is trivial that when ¢ = 1 and ¥ = O, this pair is a solu—
tion of equations (27). When this solution is substituted into equa—
tion (28)

d + 1Y = W(o) q

1l .
=9+if—-—-dq (29)
T,
o

If the real and the imaginary parts of equation (29) are again substi-—
tuted into equetion (28), the next solution gives -

q q
2 2 2
W()=e"+216 —]-'-dq_-—a'. T —l-d.q_ (30)
P Tl P 2. T1
o o

o]

The superscript 2 in parentheses indicates that the function has the
nature of a power, as is observed whep T3 =T = 1. Here eguation (30)
reduces to (8 + 1q)2 = g2,

The notation F(gg;0), 05 = 65 + iq,, indicates that 6, and gqq
are the lower limits of integration in equation (28). For example,

q qQ .
2 2 2
w( )(co;c) = (6 - 8,) + 21 (6 —6,) . dq -~ 2!/78 /I ,—r!'—- dq
- Ta - . 1
o % 90

and corresponds to the function (g — 00)2. When oy = 0, F(oy;0) is
usually written F(a). '

Let
(o)
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r n times ~
n!j]h-l:/p Tg « & .J/Q!;-dqé, n odd
) . Tl . Tl
n 2 . B .
o™ (q) = ¢ n_ times (31)
nt f T L L d B n even
n. B Tl « s Tl q 2
. »

If this operation is repeated n times the resulting solution is

W(n) = (9 + 1Q.) (n)

GYU in"“\? (n‘V)(q) (32)

n
= C Q

V=0

v

where Cn,v is the pth binomial coefficient.

If another trivial solution is taken as a first solution, say,
¢ =0,y =1, and substituted in equation (28), 1t follows that

#

F(o) = 1.-W(o)

iﬁ(c)
i(6 + f/ﬂ Tg dq) _ (33)

.

L]

The symbolic notation 1.W 1ie used to represent & generslization of the
concept of-multiplication. It will be seen that this notation is rather
useful. When this process of substitution is repeated

(2) ~(2)
i-W(Q,) iW(o.)

1(92+21e/-rzaq—az/ﬁ.rl:/‘-rqua) (34)
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n Eimes

rd i AY
Q,*(n) = / ) ’ ..
In'.‘/’-.?lz To o ./ngqn n aven

Agein, if this operation is repeated n +times the resulting solution is

(35)

1@ o gpln)

N p n-v _ (o)
=1 ) 0gp 80 1T V@ Vi (a) (36)

[

V=0

Finally, if the trivial solution ¢ =,V = f is teken, o and B
being constants, n—repetitions of the operation (28) yield the solution

a-W(n) = ocW(n) (¢) + B [i'w(n)] (37)

where a = o + ifS.

Complex~valued functions of which the real and imaginary parts sat—
isfy the system 826) are sald to be $-monogenic functions. Thus,

Wit and 1W'\B = W ) ave Y —monogenic functions. These are more
specifically referred to as formal powers, since when T, = To = 1, they

reduce to o= = (6 + 1q)® and i0® = 1(6 + 1q)®. The formal product of
the two solutions & and W(B) ig a-W(n), which itself is a solution.

It should be noted that the ordinary product aW(n) is not a solution
of the system (26) when a 1s complex.

Ag T-multiplication of a constant and a formal power was intro—
duced, so may X-—integration be introduced. The I~integration of the
L-monogenic functiony f(c¢) = @ + 1Y, 1s defined as

F(o) =@ + 1Y

8q | 6q '
=f (cpde—Tz\lfd.q)+1/ <\ud6+-.l-.l-l-cpdq> '
=f f(o)di, o (38)
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The Z refers to the coefficient matrix of system (27).

- 1 7y

s (39)

—t

1 7
2

And »-differentiation of the I-monogenic function, f£(o) = ¢ + iy,
is defined as

§(U) } dZ £ (o)

% o]
= Qg + iyx (h0)

From the relatione of equations (27)

=Tavy -7 oy (41)

Again, when T, = Tz = 1, JS-—integration and p-differentiation
reduce to ordinary complex integration and differentiation. o

A more elaborate definition of ZI~integration and differentiation
has been given Iin reference 2. It has been shown in referemnce 2 that

EZ_F_(_O_). = (o) (kg)

and

L/VI"‘* (s)dy o = F(o) (43)

Thus, Z-integration and I-differentiation are inverse procegses. Also,
the 3—derivative of a I -momogenic function is a ZI-monogenic funotion.

From the preceding definitions it can be verified by direct compu~—
tatlon that the I—integration and the I -—differentiation of the formal
powers follow similar rules to those of ordinary integration and differ-—
entation of the powers of a complex variable; morse precisely,

ar{n+e)
f ai®a_q a7 (i)

n+1l
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and

_d'.ZL. [a-W(-n)] = na.'-W(n—l) (""5)
dZZU : .

Since system (27) is linear, the sum of two solutions is a solution.
Hence, a formal polynomial of the nth degree,

f(O’) =ag +a1W+ ...+ &n'w(n), an 5‘ o ()-1-6)

1s a X -monogenic function. The formal power series

£(o) = Z o™ N 0

n=o

represents a X -monogenic function, provided the series converges uni—
formly and absolutely in some nelghborhood of oop.

It has been shown (reference 2) that every complex solution of
system (27) can be repregented uniquely by a formal power series of the
form of equation (47). (This statement is true only when Ty T2 > O,
that 1s, in the elliptic case or subsonic flow.) The coefficients are
glven by the formuls

n
dy f(d)

nt n ot

oy = (48)

Since every solution of system (27) can be represented, at least
in some neighborhood, as & formal power series and since every complex
potential in the hodogreph variables of a compressible .fluid 1s a solu—
tion of system (27), 1t would appear that it remains only to choose that
particular gsolution which is the desired flow around a glven body with
prescribed conditions. This approach, however, still has some very
serious difficulties.

The formal powers presented previously are solutions of system (27)
in closed form and are valld throughout thelr reglions of regularity.
The first powers W(o) and 1-W(¢) are lmown to represent a compress—
ible vortex, respectively. The higher powers appear not to represent
any flows of interest. Linear combinations of the powers, that is,
formal polynomials, have not yet been studied sufficlently to determine
whether they represent flows of interest. The solutlons represented by
formal power series are first, not in closed form and, second, not vaelid
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throughout their regions of regularity. Furthermore, since in asrodynam—~
ics the maJjority of solutions of interest are those that are regular
throughout the exterior of a closed iegion,. solutions corresponding to
the enalytic functions o B must be obtained in either closed form or

in a seriss that can be extended throughout its reglon of regularity.
What is most desired ls s theorem analogous to that of Laurent in ana—
lytic functions, for X-monogenic functions, Such a theorem, 1if it can
be found, might quickly lead to the solutions of the major problems in
compressibility.

It is haerdly hoped that the complicated problem of compressibility
can be solved in any simple way. Any results in this direction, there—
fore, are of interest.

Some progress along these lines has been made by Bers and Gelbaxri~
(reference 2) by extending to r-monogenic functions some of the results
on the Laplace transform. Thesse give, in closed form, solutions of
system (27) that are different from the formal powers a-W(n), and in
half planes correspond to the analytic functions o %,

Consider the function

wregno) = ) T W Deg o9
n=0 - .

where as befors a = a + i (see references 1 and 2) and a i1s real.
For the sake of brevity

1.-E(o,5a,0) = E(og5Q,0)
(50)
E(Os;a,0) = E(a,0)
This function is termed the "Zexponential function" for obvious
reesons. '
A simple computation shows that
ab )
E(a,0) = e [c(ama) + 18(a,q@)] (51)
and
= 1% o P
i-E(a.,a) = 18" [c (a'JQ) + is‘(“:‘l)] (52)

where
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& n =zn R
c(x,q) = ST (K1) o szn)(q)

(53a)

o) = ) (L (em)
’ — (2n + 1)!
n=o > (53b)
b n  2n+a
g*(a,q) = ? e Q*(Enﬂ)(q)

= (en o+ 1)1 | .J

From the definition of E(a,s) and that of T—differentiation, it
is clear that

N = .
g0 [E(e,0)] a E(a,0) (54)

Further properties of functions ¢, s, c¢*, and- s* are

8(e,0) = g7(a,0) = 0
(55)
e(x,0) = c*(a,0) = 1
and
s'(e,q) = o %
s*f (250) = o Tz(a)e* (a,y) (56)

—

et (a,q) = —a T2(a)s(c,q)

et (ayq) = —mg;%%)- )
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the differentiation being with reaspect to g. These functions may be
regarded as generalizations of the trigonametric functions and have many

propexrties a.nﬂ,ogoue to those of the trigonometric functions. For
example, they®satisfy Sturm-dLiouville differential equations and possess

such properties as

cla,q)e*(a,q) + sla,q)s*(a,q) = L (57)
Now consider the function

#(a) = Ly [¥(a)]

[«2]

=/ F(a) + E(-o,0)da (58)
J _

where F(a) = Fy(a) + iFz(a) is a complex—valued function of the real
variable «a, PFi(a) and Fp(a) being real functions. This is called
the Z-Laplace trensform of F(a), for when T; = T = 1 {he integral

in equa,i(:i?n (58) reduces to the ordinary laplece transform of the func—
tion F(a). )

Equation (58) may be rewritten in the more convenient form

f(o) = 9(6,q) + ¥ (8,q)

=fFl(a.)E(—a,cr)dcc +f Fola) [1E(-a,0)] da
[o B [s] (=<
=fe—“9 c(e,q)F1 (a)da — if o s(a,q)F1 (a)da
° 4 Y
‘1 / 0™ o (o) )¥a(a)da + f e ¥ (a,q)T2(x)a (59)
*%o ~o
Then
¢ (a,0) = f e c(a,q)F: (a)da + f o g*(a,q)Fa(a)da  (60)
and ° ° )

V(o) = - f P s(a,0)Fs (whda + | 6% or(a,0)Fa(adin  (61)
o Yo

Two facts may be demonstrated about the function in equation (58):
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1. If B 1is the abscissa of convergence of the Laplace integral

f e (a)au (62)
“o

then the generalized Laplace integral

oo

J/ﬁ F(a) « E(—,0)da (63)
A _
converges uniformly in the semi—infinite strip o

8> 6,>p
Q<a<ga AR

2. Integral (63) represents a F-monogenic function in the open
half plane 'of convergence of integral (62).

Because of theorem 2, expression (63) represents a new class of
golutions of system (27) in closed form. Hence, for every function
F(a) for which integral (63) converges (from theorem 1 this class is
known to be wide), expression (63) 1s the complex potential of a com—
pressible flow in the hodograph coordinates.

For certain functions F(w) it is easy to show that the formal
series expansion of function '

o

fa) = /F(oc) ‘E(-a,0)da
t%o

converges in a smaller region then does function f(a). The S-ILaplace
representation of a function may thus be regarded as a means of contin—
ulng analytically a function that is given in the form of a formal power

geries.
. . . . ) _
. / o g (64)
"o

in the right half plane, it seems natural to define the negative I —
power function by . -

w) =/E(—a,cr)da. (65)

Q

Because

ale
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Since T —differentiation under the integral sign is permitted, rep—
regsentations for the higher negative I -—powers can be obtained. By -
differentiating each side of equation (65) n +times and using equation
(54), it follows that

dni:n [W(—l)] =/E(—q,,o')q;n do (66)
dZ.G (o]

In view of equation (66) 1t seems convenient to define the negative
L—~powered functions by

w(‘n) n/’E(—a,a) e da, (67)
(n - 1)

“o
Generalizations of other special functions of a complex varilable may be
obtalned in a similaxr way.

In order that functions W(-n), as defined by equation (67), play
a similar role to that of the inverse powers 1t wculd be necessaery to
show that they possess a pole of the nth order at the origin and je
regular everywhere slse. Thie has not yet been shown. In fact, W ~n)
is defined only for the right half plane, Rlo> O. It can be defined
in the left half plane, Rlo< 0, by

-] n—1
W) =fE(a,o) — 4 (68)
J (n - 1)

On the imasginary axis other than at the origin 1t can be defined as the
limit of the function as o &approsches a point on the imaginary axis.

It has not yet been proved that W - , 4defined 1n the right and the

left half plane by equations (67) and (68), respectively, is continuous
acrogs the imeginary axis. If its truth 1s assumed, somo progress might
be made in the study of compressible flows.

In order to study the flows that arise from these solutions, it 1s
necessary to transform them from the hodograph back to the physical
plene. :

Conasilder the solution
P+ 1Y = win)
- r -r ~{r)
i 1 cn’ren Q (69)

n=o
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The real part is

n
e .
' 2r
o= ) (A Oy o T P (0)
r=0
and the ilmeginary part is
n—i
=]
r n—2r—1 (=2x+1)
Ve ) D) Gy Q (71)

=0

where the brackets in the upper limit of the summation Indlcate that the
integer chogen is the smaller one nearer 0 the number within the
brackets.

After substituting (70) and (71) into squation

eie i
dz = ~— (dp + = 4
3 (ag = W)

16
= .e_q_.[q;e a6 + 9, dq + -:; (o 28 +vq d.q)] i (72)
and integrating, it follows that
gn-s+(-1)Pt
. ’ 4 .
18 (1 Z r (2r)
2=0e 3 (1) (n—2r)Cp, or Q .
. re r=o - n l A'. - .
[an—s+(-—1)n+;] g - - BRTE-L-s
4
+ o= E [(-—l)r(n - 2r = 1)Cp s Qlam)

n~dr--2

s {(n—2r-2)! g ar—s—2 .
Z a (n—.?r—s—-e)!]}(n)

B=0
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Equation (73) together with equation (69) can be regarded as the
parametric equations of the compressible flow of ¢ + iy in the physi—
cal plane.

Similarly, for the solution

P+ 1y = 1 (@)

1 fﬁ 1 ¢y OO g ) (7T4)
= | o o

[ [211——3+ (- )n+1. }

4

z. {-(—l)r(n—Qr)C;;,zr Q*-(‘?r) .

r=0 L - - .=

/
J1e {

Q|-

n—ar—i n—-2r-g—L ]

S“ 4871 (n — 2r _ L)t 8
(n~2r—g~—1)¢

[211——3-«- (—-1)“"‘1] =°
4
U S RN
fa r?o
il g (n—2r — 2)! Cal 2 -]\ -
i > (75)
o {n—2r -8 —2)!

By taking linear combinations of the formal power sclutions, other
flows can be obtained in the physical plane in parametric fomm.

If the gensralized laplace integral solutions are taken, then
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@+ iy = J/AF(a)-E(—aqo)do
Yo o . —_
= fe—w [c(a,q)Fl(a) + 0*(%C1)F2(G-)] do L
o ® . . )
+ i~j/ﬁe_qe [c*(a,q)Fg(m)da - % s(a,q)Fl(&J] do
and o
1 ze(i—m)e , . .
z=-2 [ T [cca,q)m@) - e*(a,q)Fam)J a
q, i-oa
0
- c(_eiji)f_ {c* (2, q)Fs(a) _s(q,,q)Fl(d,):l da (76)
an i-a .

Further investigation is required to determine precisely under what
conditions the flow is 1 around a closed body and uniform at iInfinity.
These investigations seem within reasch by the method here indicated.

This could yield mixed subsonic—supersonic flows with subsonic free— .
stream velocitles under the assumption of the adiabatic equation of stabe.

As an application of the method outlined in thils paper, flulds of
which the flows are everywhere subsonic (more precisely, flows satisfy—
ing the linearized equation of state) are chosen. Precise conditions
are obtained for flows arocund closed bodies with prescribed velocities
at infinity. Plows under these hypotheses have been investigated with
much success by Chaplygin, von Kermen, Tsien, Bers, and others. OFf par—
ticular interest in this connection for flows around closed bodies 1is
the work of Bers (reference 8). _ .

In the sequel to the present report (reference 13) a detailed inves—
tigation of the flow around a circle is made (under the assumption of the
linearized equation of state). This is done primarily because the flow
around a circle appears t0 be basic for the study of flows around given
bodies, as in the case of incompressible flulds.

COMFRESSIBLE FLULDS UNDER THE ASSUMFTION OF THE LINEARIZED EQUATION OF STATE

Of the four basic relations of the flow, equations (1) to (4), the
first, the equation of state, 1s replaced by

pom-x(i-i ()
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where p; s the density for a given veloclty qi;, and pay is the cor—
responding pressure.

If pressure—volume curves are drawn of equations (1) and (77), 1t
is observed that when k is sultably chosen equation (77) represents a
line tangent to tle curve represented by equation (1) at the point p,,
1/p;. Von Karmeh and Tsien used this fact partly to Justify the use of
the linearized equation of state for the study of subsonic flows.

From equations (5) an? (77)

& k
E: = a2 = — pe (78)
Hence

a® p2 = —k (19)
From equation (6)

2 2 2
%? t//ﬁ E_EE- dp = consgtant
. o]

and from equation (79)
2
%? + a2 Q%J/q gg = constant
. P

Thus,
g® - a% = constant (80)
It follows .that
2/8 1
g2 — a2 = 9?/a
1/a®
M-1
—%/x
= constant
or
2
LM _ constant (81)
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By the normalization, ag = po = 1, the constents in the right-—

hand sides of equations (80) and (81) are readily determined to be minus
unity and unity, respectively. Thus, '

62 = 1+ g2 e (82)
and .
p2= 1 — M=
2
= ] - 5
1+ g
-t (83)
1+ ¢
From equation (77)
P—pl'-‘k(y—l—'—'-‘l— (84)
1+g2 p3 -

Agein, from the definitions of stream function ¢ and potential
function  of an Incompressible fluid

do = u dx + v dy

(85)
& = —v dx + u dy
also .
a9 = @, dx + ¢_ dy
* 7 (86)
ab =y dx +\Vy dy
Comparing systems (85) and (86), it Pollows that
Py =V
£ (87)
: ch = Yy

These are the Cauchy—Rlemann equations. This esteblishes the well-known
fact that the complex potential = @ + 1y of an incompressible flow is
an analytic function of the complex variable 2z = x + 1y, +the complex
coordinates in the physical plane.
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When the second of equations (85) is multiplied by 1 and the two
equatione added

g = (u — 1iv) (a&x + 1 dy)
or

d.z=::|;:-e an (89)

By proceeding as was done in the derivation of equations (2%), the
change of the variables (x,y) to the independent variables (6,q) in
equations (87) leads to equations

Ve = 4 g
N (90)
E -—\'}'
cpg_ a =]
The transformation that will symmetrize system
o =Tz (a) ¥
4 (s1)
Pq =T2 (a) Vg
is glven by
~ T2(a)
= 222 49, 6 =206 (92)
f T1(q) !
System (90) i1s therefore symmetrized by the transformation
q
~ dg q
= —— 3 lo —— (93)
q‘oo
and reduces to the Cauchy-Riemann equatilons
Py = Yo
2]
1 (94)

Pg= Ve



NACA TN No. 1170 a7

Thusg, the complex potential of anJincgmpressible flow, given in terms of
the independent variables of the €, g—plane ies an analytic function of
the complex variable w = 6.+ iq. T

Egquations

(95)

can gimilerly be symmetrized by the tremsformation
a :
- = e
q= / AN (96)
. q _ .
- :

Equetions (95) then become

(97)

However, under the sssumption of the linearized equation of state

V1 - M2
— =

1
so that equations (97) become the Cauchy~Riemann equations

Pg = Uy
: (98)

97 =~
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Again, the complex potential of a compressible flow under the assumption
of the linearized eqguation of state is an analytic function of the com—
plex variable w = 6 + ig. The w-plane shall be referred to as the
distorted hodograph plans.

Any enslytic function of w may be regarded as the complex poten—
tial of either an incompressible flow in the physical plane or in the
hodogreph plane, or a compressible flow in the distorted hodograph under
the assumption of this section, and vice versa; then, in general, to
every incompressible flow around a given body with a given free-stream
velocity there corresponds a comprossible flow (everywhere subsonic)
around the pame body with the same free-stream velocity.

This correspondence can be expressed as follows: Given the complex
potential Q(w) of an incompressible flow, or of a compressible flow
in the distorted hodograph, then there exists an analytic function
w = g(l) such that Qfg(t)] is the complex potential in the distorted
hodogreph {-plane of a glven compresgible flow,

Since
/ = 1
1 - = p, and P = = ———

q
a.
= [ ~ - (99)
+ q
" o
and
3 = log ——2 (100)
1 +/1 + qZ
vhere
1+, /1 + 2
Ke ¥ T 3 (101)
4
Hence
od = — K2 (102)
pu——
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and . —-
q
1. X _ e : (103)
qQ qu 2K
Also
1 .Axd®
ra q
a
=.;E= v 20 (104)
29q 2

Thus, equation (16) may be put into the more convenient form,

ol Q i/Q.=5

dz = =— d(ﬂ—tﬂ->+—< =
q 2 o) 21
i6 i6

1 1 1 1 -~
RSN L CRER (105)

2 M p 2 "q

From equations (103) and (104), equation (105) becomes

a o2, aQ el® NdQ B
z = . —E i
K iw R o
= = - . 106
5 ° an = © an - (206)

where w =6 + 15. Thus, ’ ’ ' -

_ K iw 1 —iw
z 2;/[‘9 a2 EKQ/[,G __ﬁ{{—"_ ) (}?7)

where Q(w), +the complex potential of & compressible fluid in the dis—
torted hodograph plane, is an anaslytic function of w.

Since the complex potential of a compreésible fluid remains the
complex potential of a compressible fluid under an analytic transforma—
tion, set -

o2ft ()
w(t) = i log @l(-% (108)
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or
iw _ 20 (¢
o™V = ed) (109)
and
A KG!
e Vo= 'é—f—‘—%%‘ (llO)

where f({) and G(f) = Q[w({)] are amalytic, f£({) being arbitrary
and G g) the complex potential of an incompressible flow around &
given body in the physical {-~plane.

When W 1s considered a function of {, eguation (107) may be
written as

z = gfei“’mw(g)ag -1 /e—“(é)w(g)ag (111)

When equation (108) is substituted into equation (111), eguation (111)
becomes .

_ 1 [ eren® _
z = £(t) l;‘./ L?'(% at (112)

It should be emphasized that f£({) is an arbitrary analytic function of
{, while G({) 4ie an incompressible flow in the (-plane, { being
the physical coordinates of the flow, and G(¢) = Q%w( £)] 1is the corre—
sponding compressible flow in the w-plane. The relation,

Im G(§) = Im Qf(L)]

= constant

represents streamlines of the lncompressidble flow as well as streamlines
of the compressible flow. If { moves along a streamline of the incom—
pressible flow, then w, - given by equation (108), traverses a stream-
line of the compressible flow in the hodograph plene and 1z, by the
transformation (108), traces out a streamline in the physical plane of
the compressible flow. )

It 1s convenient to consider G(!) the incompressible flow around

-~
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a circle of radius R, with circulation T, and having a free—stream
velocity I namely

M0=qmg+%>~§h%% (113)

Since oi¥ = o#(0+1Q) 1% rollows from eguation (110) that

~

-6 @ . K& (f) 11k
o ot =32 0 (11k)
Thus, . | T
;=§iWQ)
21 f1(¢)
and recalling the relation (102),
- _
4 K2 - 24
B
fi
= ~ (115)
1a
l‘ﬂz«‘

If, then, f({) is so determined that a prescribed flow around a
given body is obtained, it foliows that for a given value § eguation
(112) determines a point of the flow and equation (115) determines the
velocity at that point. ’

At a stagnation point ¢ = O, From equation (115), q = O when
G!'({) = 0. Thus, stagnation points of the flow oceur wherever stagna—
tion points occur in the incompressible flow G(!) in the {-—plane.

Ifas f{—>c, z-—>m, and G'({) is bounded away from zero at
infinity, then, from equation (115), -f!'(f{) must be regular and unegual
to zero at infinity, if the flow is to have a velocity g, # O at in—
finity. Thus, the most general form that f£({) can have is

1

—=ir  Po #0 (ilé)

<o
£() = by + borf + by log ¢ + \ by

e

n==2
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and
(L) =bo+bl-l-— ? (n-—l)bn-l-n (117}

where the values of b may be complex constants.

It is known from incompressible—flow theory that uniform flows past
closed bodies must also have this form. Therefore, the second texm in
the right-hand side of squation (112) takes the form

g(t) =-1\;L/\L—i§ll-("'(c) at
f!

- - 1
= C_y + Co § + €y log { + Cn =53

(118)
et

=g .

If the flow at infinity is to be horizontal apd of megnitude q_,
then from equation (114} and the fact that G .= O

=8 1o (119)
When G(z)} is given by equation (113),
C}_i_n; SET(E) = by
| R
-3aq, _ (120)
lim

whore ¢ .7 8! (t) = b, is the condition that the flow at infinity be
horizontal and q = o

In ordsr to eiamine the shape of the body in the stream of the flow,
the circle { = Re>? 1p mapped through oguation (112) into the z-plane.
In order for the circle to map into a closed body, it follows from squa—
tions (116) and (118) that
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b1 itp--gl i =0
or

by — 1 = O C T (121)

It is of interest to note that, when f(f{) ={, the formula of
Tsien (reference 6) is obtained; namely

z=c-%ft<*‘<0fa§ o (22

The coefficient in the integral term is different only because of a dif-
ferent noxmalization.

Again, when

£(t) =‘[ [G.I(g)] i1/n at

Bers! formuls is obtained; namely

g

s [ e e f @ e o

- POaha

Here, too, the formulas differ only by a normalizing factor.

In Bers! formula n is arbitrary within limits. This freedom
enables him to determine the conditions for the flow around a closed
body. Since f£(t) in formula (112) is arbitrary and analytic, there is
an infinite number of arbitrary coefficients. The first two coefficients
determine the flow at infinity and that the flow be around a closed body.
The other aerbitrary coefficlents can be fixed to determine the flcw
around a given body.

A similar technique to that developed by Theodorsen and Garrick
(references 14 and 15) for determining the coefficients of f({) might
be developed in order to obtain a preseribed body. Bers has employed
this approach by another method with some success. It should be noted
that when M = 0 +the transformation (112) reduces to the initisl trans—
formation used by Theodorsen (reference 1i4). This implies that if an
integral equation were set up from egquation (112) it would reduce to
Theodorsen's when M = O, go that the integral eguation would be a
generalization of Theodorsen's transformation.
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In another paper Bartnoff determined f(g) such thmt the circle

{ = Rel® goes into a unit circle in the z—plane (accuracy to within
e few percent), thus giving the couwpreessible flow around a circle. Thise
hag been done by others, notably by Bers.

The right—hend side of the transformation (112) is invarient under
an analytic transformation. ¥For, let —

¢ o= gle) (124)

be an analytic function of +£; then by direct substitution I equation
(124) into eguation {(112), the twanaformation becomes

ALt 6 el 2
cet (10 ~%;f{"/‘“‘ ZLIDIL o (125)
4 J T aptene)

Because the transformation (112) is invariant under a conformsl
transformation the submonic flow of a compreossible fluid around a circle
is of basic ifupoxtance,

Syracuse Unlversity,
Syracuse, New York, July 1, 1945,
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